Solving and Interpreting Binary Classification Problems in Marketing with SVMs
نویسندگان
چکیده
Marketing problems often involve binary classification of customers into “buyers” versus “non-buyers” or “prefers brand A” versus “prefers brand B”. These cases require binary classification models such as logistic regression, linear, and quadratic discriminant analysis. A promising recent technique for the binary classification problem is the Support Vector Machine (Vapnik (1995)), which has achieved outstanding results in areas ranging from Bioinformatics to Finance. In this paper, we compare the performance of the Support Vector Machine against standard binary classification techniques on a marketing data set and elaborate on the interpretation of the obtained results.
منابع مشابه
Multiclass Approaches for Support Vector Machine Based Land Cover Classification
SVMs were initially developed to perform binary classification; though, applications of binary classification are very limited. Most of the practical applications involve multiclass classification, especially in remote sensing land cover classification. A number of methods have been proposed to implement SVMs to produce multiclass classification. A number of methods to generate multiclass SVMs ...
متن کاملOptimizing Hyperparameters of Support Vector Machines by Genetic Algorithms
In this paper, a combination of genetic algorithms and support vector machines (SVMs) is proposed. SVMs are used for solving classification tasks, whereas genetic algorithms are optimization heuristics combining direct and stochastic search within a solution space. Here, the solution space is formed by combinations of different SVM’s kernel functions and kernel parameters. We investigate classi...
متن کاملMulti-class Classification Using Support Vector Machines in Binary Tree Architecture
This paper presents architecture of Support Vector Machine classifiers arranged in a binary tree structure for solving multi-class classification problems with increased efficiency. The proposed SVM based Binary Tree Architecture (SVM-BTA) takes advantage of both the efficient computation of the tree architecture and the high classification accuracy of SVMs. Clustering algorithm is used to conv...
متن کاملSupport Vector Machines for TCP traffic classification
Support Vector Machines (SVM) represent one of the most promising Machine Learning (ML) tools that can be applied to the problem of traffic classification in IP networks. In the case of SVMs, there are still open questions that need to be addressed before they can be generally applied to traffic classifiers. Having being designed essentially as techniques for binary classification, their genera...
متن کاملEnsemble Approaches of Support Vector Machines for Multiclass Classification
Support vector machine (SVM) which was originally designed for binary classification has achieved superior performance in various classification problems. In order to extend it to multiclass classification, one popular approach is to consider the problem as a collection of binary classification problems. Majority voting or winner-takes-all is then applied to combine those outputs, but it often ...
متن کامل